Even though epoxy adhesives are used extensively in concrete structures, little fundamental research has been conducted regarding bond formation mechanisms between the adhesive and concrete substrate, which obscures our understanding of degradation mechanisms in the bonded joints. When epoxy adhesive is applied to the concrete substrate, a transition region – termed interphase – is formed between the bulk epoxy and bulk cement paste/aggregate. Properties of interphase are thought to govern the macroscale behavior and durability of epoxy-concrete bonded systems. This work proposes an elastic multiscale model of the interphase region that is based on the existing body of knowledge on the topic. Site-specific statistical nanoindentation was used to experimentally evaluate the interphase region and verify the micromechanical model. Test results indicate that mechanical properties of the interphase region are different from those of bulk epoxy and cement paste. Experimental findings agreed with the postulated multiscale interphase model.