An extracellular endo-1,4-β-D-glucanase from Fusarium oxysporum was purified by affinity chromatography and gel filtration. The enzyme purified in this way was homogeneous when judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing-polyacrylamide gel electrophoresis. The protein corresponded to a molecular mass and pI value of 41.7 kDa and 6.4, respectively. It was optimally active at pH 4.5 and at 55°C. The enzyme hydrolyzed carboxymethylcellulose (CMC) and unsubstituted and substituted cello-oligosaccharides but was inactive on Avicel, filter paper, xylan, cellobiose, p-nitrophenyl-β-D-glucoside, and p-nitrophenyl-β-D-xyloside. However, the enzyme effected only a small change in viscosity of CMC per unit increase of reducing sugar. When cellotriose, cellotetraose, and cellopentaose were used as substrates, the enzyme released mainly cellobiose. Use of 4-methylumbelliferyl cello-oligosaccharides and the determination of bond cleavage frequency revealed that the enzyme preferentially hydrolyzed the glycosidic bond adjacent to 4-methylumbelliferone. Thus, the purified enzyme appeared to be a less randomly acting endoglucanase.
Read full abstract