Given the varying vulnerability of the rostral and caudal regions of the hippocampus to neuropathology in the Alzheimer's disease (AD) continuum, accurately assessing structural changes in these subregions is crucial for early AD detection. The development of reliable and robust automatic segmentation methods for hippocampal subregions (HS) is of utmostimportance. Our aim is to propose and validate a HS segmentation model that is both training-free and highly generalizable. This method should exhibit comparable accuracy and efficiency to state-of-the-art techniques. The segmented HS can serve as a biomarker for studying the progression ofAD. We utilized the functional magnetic resonance imaging of the Brain's Integrated Registration and Segmentation Tool (FIRST) to segment the entire hippocampus. By intersecting the segmentation results with the Brainnetome (BN) atlas, we obtained coarse segmentation of the four HS regions. This coarse segmentation was then employed as a shape prior term in the lattice Boltzmann (LB) model, as well as for initializing contours. Additionally, image gradients and local gray levels were integrated into the external force terms of the LB model to refine the coarse segmentation results. We assessed the segmentation accuracy of the model using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and evaluated the potential of the segmentation results as AD biomarkers on both the ADNI and Xuanwudatasets. The median Dice similarity coefficients (DSC) for the left caudal, right caudal, left rostral, and right rostral hippocampus were 0.87, 0.88, 0.88, and 0.89, respectively. The proportion of segmentation results with a DSC exceeding 0.8 was 77%, 78%, 77%, and 94% for the respective regions. In terms of volume, the correlation coefficients between the segmentation results of the four HS regions and the gold standard were 0.95, 0.93, 0.96, and 0.96, respectively. Regarding asymmetry, the correlation coefficient between the segmentation result's right caudal minus left caudal and the corresponding gold standard was 0.91, while for right rostral minus left rostral, it was 0.93. Over time, we observed a decline in the volumes of the four HS regions and the total hippocampal volume of mild cognitive impairment (MCI) converters. Analysis of inter-group differences revealed that, except for the right rostral region in the ADNI dataset, the p-values for the four HS regions in the normal controls (NC), MCI, and AD groups from both datasets were all below 0.05. The right caudal hippocampal volume demonstrated correlation coefficients of 0.47 and 0.43 with the mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), respectively. Similarly, the left rostral hippocampal volume showed correlation coefficients of 0.50 and 0.58 with MMSE and MoCA,respectively. Our framework allows for direct application to different brain magnetic resonance (MR) datasets without the need for training. It eliminates the requirement for complex image preprocessing steps while achieving segmentation accuracy comparable to deep learning (DL) methods even with small sample sizes. Compared to traditional active contour models (ACM) and atlas-based methods, our approach exhibits significant speed advantages. The segmented HS regions hold promise as potential biomarkers for studying the progression ofAD.
Read full abstract