A Mediterranean cyclone is a weather phenomenon capable of producing extremely severe conditions, including heavy rainfall and strong winds. Between March 24 and 26, 2023, a cyclone passed along the western Egyptian Mediterranean coast, spanning three days. This paper aims to investigate the cyclone's impact on wave characteristics, focusing particularly on simulating changes in the energy transported from wind to waves during its passage, which constitutes the core objective of this study. The research methodology involved collecting meteorological and hydrodynamic data over five days from March 23 to 27, 2023, utilizing databases of the Bologna Limited Area Model (BOLAM) and the General Bathymetric Chart of the Oceans (GEBCO). This data, combined with field data for model calibration and validation, was analyzed using the Simulating the WAves Nearshore (SWAN) model packaged within the Delft 3D hydrodynamical model, integrated with other data manipulation tools. (SWAN) demonstrated the ability to simulate energy transport during extreme weather events along the coastal area with high resolution, up to 500 m. The results indicate a significant increase in significant wave height, reaching up to 2.5 m, and disturbances in wind direction, with velocities exceeding 10 m per second. These conditions pose risks to the infrastructure in some cities along the study area and have severe impacts on coastal communities. A notable finding from the simulations is the excess energy transport, which reached up to 12,000 watts per meter over the sea surface during the cyclone. Furthermore, calibration and validation results affirm the (SWAN) model's capability to accurately study wave characteristics.
Read full abstract