Abstract
The evaluation of weather forecast accuracy is of major interest in decision making in almost every sector of the economy and in civil protection. To this, a detailed assessment of Bologna Limited-Area Model (BOLAM) seven days fine grid 3 h predictions is made for precipitation, air temperature, relative humidity, and wind speed over a large lowland agricultural area of a Mediterranean-type climate, characterized by hot summers and rainy moderate winters (plain of Arta, NW Greece). Timeseries that cover a four-year period (2016–2019) from seven agro-meteorological stations located at the study area are used to run a range of contingency and accuracy measures as well as Taylor diagrams, and the results are thoroughly discussed. The overall results showed that the model failed to comply with the precipitation regime throughout the study area, while the results were mediocre for wind speed. Considering relative humidity, the results revealed acceptable performance and good correlation between the model output and the observed values, for the early days of forecast. Only in air temperature, the forecasts exhibited very good performance. Discussion is made on the ability of the model to predict major rainfall events and to estimate water budget components as rainfall and reference evapotranspiration. The need for skilled weather forecasts from improved versions of the examined model that may incorporate post-processing techniques to improve predictions or from other forecasting services is underlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.