Abstract
Engineering dam projects benefit society, including hydropower, water supply, agriculture, and flood control. During the planning stage, it is crucial to calculate extreme hydrographs associated with different return periods for spillways and diversion structures (such as tunnels, conduits, temporary diversions, multiple-stage diversions, and cofferdams). In many countries, spillways have return periods ranging from 1000 to 10,000 years, while diversion structures are designed with shorter return periods. This study introduces a hydrological method based on data from large rivers which can be used to compute extreme hydrographs for different return periods in engineering dam projects. The proposed model relies solely on frequency analysis data of peak flow, base flow, and water volume for various return periods, along with recorded maximum hydrographs, to compute design hydrographs associated with different return periods. The proposed method is applied to the El Quimbo Hydropower Plant in Colombia, which has a drainage area of 6832 km2. The results demonstrate that this method effectively captures peak flows and evaluates hydrograph volumes and base flows associated with different return periods, as a Root Mean Square Error of 11.9% of the maximum volume for various return periods was achieved during the validation stage of the proposed model. A comprehensive comparison with the rainfall–runoff method is also provided to evaluate the relative magnitudes of the various variables analysed, ensuring a thorough and reliable assessment of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.