This paper explores the role of Bogor Botanic Gardens (BBG) as a form of Nature-Based Solution (NBS) to mitigate Urban Heat Islands (UHI). Time series analysis of LANDSAT 8 OLI thermal band and Normalized Difference Vegetation Index (NDVI) was done from 2013 to 2020 using Google Earth Engine. Land Surface Temperature (LST) from Bogor and BBG were calculated, compared, and annual UHI areas were derived. The relationship of LST and NDVI were also explored annually to describe the effect of vegetation towards LST with linear regression. Overall, Bogor experiences a decrease of mean LST from 30.67°C and a maximum of 39.14°C in 2013 to 27.07°C and a maximum of 34.35°C in 2020. However, the inside of BBG is cooler with temperature ranging from 28.41°C and a maximum of 35.62°C in 2013 to 24.25°C and a maximum of 29.41°C in 2020. This is an effect of vegetation inside the BBG that regulate microclimate in its surrounding. It can be seen in the negative correlation between NDVI and LST observed with r2 ranging from 0.27 to 0.82. While UHI areas tended to increase from 8220 ha in 2013 to 8926 ha in 2020, BBG consistently acts as an urban cool island in the middle of UHI. Therefore, heat mitigation is proven to be one of the environmental services provided by BBG.