The cytoskeleton of Toxoplasma gondii was studied by electron microscopy using whole mounts of detergent-extracted parasites and thin sections of routine preparations, tannic acid-stained organisms, and detergent-extracted parasites. In whole mounts, the spiral arrangement of the 22 pellicular microtubules closely corresponded to the pattern of surface ridges seen previously by scanning electron microscopy and reflected the torsion of the parasite body during locomotion. The microtubules had free posterior ends and were anchored anteriorly in the polar ring, presumed to be a microtubule organizing center (MTOC). The insertions of the microtubules were supported by blunt projections of the polar ring, forming a cogwheel pattern in transverse view. The internal microtubules had 13 protofilaments and were twice the length of the conoid. They extended through the conoid and ended at the anterior preconoidal ring, presumably a second MTOC. The subunits of the conoid were arranged in a counterclockwise spiral when traced from base to tip, as were the pellicular microtubules. We postulate that as the conoid moves, the polar ring complex moves along the spiral pathway of the conoid subunits. Retraction of the conoid would then rotate the polar ring, producing the torsion of the body we observed by SEM.