Prediction of secreted proteins in human body fluids is essential since secreted proteins hold promise as disease biomarkers. Various approaches have been proposed to predict whether a protein is secreted into a specific fluid by its sequence. However, there may be relationships between different human body fluids when proteins are secreted into these fluids. Current approaches ignore these relationships directly, and therefore their performances are limited. Here, we present MultiSec, an improved approach for secreted protein discovery to exploit relationships between fluids via multi-task learning. Specifically, a sampling-based balance strategy is proposed to solve imbalance problems in all fluids, an effective network is presented to extract features for all fluids, and multi-objective gradient descent is employed to prevent fluids from hurting each other. MultiSec was trained and tested in 17 human body fluids. The comparison benchmarks on the independent testing datasets demonstrate that our approach outperforms other available approaches in all compared fluids.
Read full abstract