Melamine has a high production volume today and is spread ubiquitously in the anthropogenic technosphere. It is released steadily to the water cycle by many sources. Even though melamine has low direct toxicity, chronic exposure can cause nephrolithiasis and disrupt the endocrine system. Most data on melamine is based on case studies with, when compared, partially contradictive implications. As melamine is a compound of many sources (SMS), very persistent, mobile (vPvM), and toxic (PMT) it has the potential to break through natural barriers posing a potential risk to drinking water resources. This study combines existing data with own measurements gathered through various individual monitoring campaigns with the aim to gain new insights into its environmental behaviour and hotspots. Samples from surface water bodies, groundwater, wastewater (treated, untreated), and soil samples were analysed regarding their melamine concentration via liquid chromatography coupled with tandem mass spectrometry (LC-MSMS). Besides three drinking water samples, melamine could be found in all water samples (n=632) of this study, with a maximum concentration of 1289ng/L in drinking water and 1120ng/L in groundwater. While a constant baseline melamine concentration with an event-based release could be observed in most surface water bodies, higher concentrations towards Western Europe (urbanisation and chemical industry) was observed for wastewater. A similar pattern was found in the spatial distribution of melamine in agricultural soils towards an urban/suburban area. As, in general, melamine concentrations were higher towards urbans centers melamine can also be classified as an indicator of anthropogenic activity and urbanisation, but also spotlights on these areas as hotspots for potentially many compounds of the human technosphere. We call policy to shift from the existing one-size-fits-all solution to more flexible and risk-based approaches to prepare for future challenges.
Read full abstract