Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D)whole-body imaging of nitroxide-infused mice. A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging. A compact and mobile CW-EPR imager operating at 750 MHz was developed using this resonator. The automatic matching and tuning control systems were also adjusted to compensate for perturbations caused by the movement of the mice. When the mice were inserted into the resonator, the resonant frequency was easily determined for all parts of the mouse, from the head to the lower abdomen. 3D EPR images of the mouse body from the thoracic region to the lower abdomen were obtained following infusion of a nitroxide, 3-carboxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl (CxP). The EPR images clearly visualized the CxP distribution in various organs at different concentrations. Time-dependent EPR images also revealed that the signal intensities of the CxP decayed over time, and the decay rates for the heart, liver, and kidneys were evaluated. A compact and mobile EPR imager that enables 3D whole-body EPR image of nitroxide in mice was developed. The EPR imager exhibited long-term stability against motion effects caused by respiratory motion and heartbeats in mice. The EPR images clearly visualized the in vivo distribution, clearance, and metabolism of the nitroxide in organs.
Read full abstract