Genomic selection is applied to dairy cattle breeding to improve the genetic progress of purebred (PB) animals, whereas in pigs and poultry the target is a crossbred (CB) animal for which a different strategy appears to be needed. The source of information used to estimate the breeding values, i.e., using phenotypes of CB or PB animals, may affect the accuracy of prediction. The objective of our study was to assess the direct genomic value (DGV) accuracy of CB and PB pigs using different sources of phenotypic information. Data used were from 3 populations: 2,078 Dutch Landrace-based, 2,301 Large White-based, and 497 crossbreds from an F1 cross between the 2 lines. Two female reproduction traits were analyzed: gestation length (GLE) and total number of piglets born (TNB). Phenotypes used in the analyses originated from offspring of genotyped individuals. Phenotypes collected on CB and PB animals were analyzed as separate traits using a single-trait model. Breeding values were estimated separately for each trait in a pedigree BLUP analysis and subsequently deregressed. Deregressed EBV for each trait originating from different sources (CB or PB offspring) were used to study the accuracy of genomic prediction. Accuracy of prediction was computed as the correlation between DGV and the DEBV of the validation population. Accuracy of prediction within PB populations ranged from 0.43 to 0.62 across GLE and TNB. Accuracies to predict genetic merit of CB animals with one PB population in the training set ranged from 0.12 to 0.28, with the exception of using the CB offspring phenotype of the Dutch Landrace that resulted in an accuracy estimate around 0 for both traits. Accuracies to predict genetic merit of CB animals with both parental PB populations in the training set ranged from 0.17 to 0.30. We conclude that prediction within population and trait had good predictive ability regardless of the trait being the PB or CB performance, whereas using PB population(s) to predict genetic merit of CB animals had zero to moderate predictive ability. We observed that the DGV accuracy of CB animals when training on PB data was greater than or equal to training on CB data. However, when results are corrected for the different levels of reliabilities in the PB and CB training data, we showed that training on CB data does outperform PB data for the prediction of CB genetic merit, indicating that more CB animals should be phenotyped to increase the reliability and, consequently, accuracy of DGV for CB genetic merit.
Read full abstract