We analyse the Blume–Emery–Griffiths (BEG) model on the lattice Zd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {Z}}^d$$\\end{document} on the ferromagnetic-antiquadrupolar-disordered (FAD) point and on the antiquadrupolar-disordered (AD) line. In our analysis on the FAD point, we introduce a Gibbs sampler of the ground states at zero temperature, and we exploit it in two different ways: first, we perform via perfect sampling an empirical evaluation of the spontaneous magnetization at zero temperature, finding a non-zero value in d=3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=3$$\\end{document} and a vanishing value in d=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=2$$\\end{document}. Second, using a careful coupling with the Bernoulli site percolation model in d=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=2$$\\end{document}, we prove rigorously that under imposing +\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$+$$\\end{document} boundary conditions, the magnetization in the center of a square box tends to zero in the thermodynamical limit and the two-point correlations decay exponentially. Also, using again a coupling argument, we show that there exists a unique zero-temperature infinite-volume Gibbs measure for the BEG. In our analysis of the AD line we restrict ourselves to d=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=2$$\\end{document} and, by comparing the BEG model with a Bernoulli site percolation in a matching graph of Z2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {Z}}^2$$\\end{document}, we get a condition for the vanishing of the infinite-volume limit magnetization improving, for low temperatures, earlier results obtained via expansion techniques.
Read full abstract