Abstract

We study by means of the 2D Blume–Emery–Griffiths (BEG) spin-1 model, spin-crossover (SCO) and prussian blue analogs (PBAs) solids. In this model, the spin states, which can be high-spin (HS) or low-spin (LS), interact magnetically and elastically with their nearest neighbors. To account for the volume change, accompanying the spin transition phenomenon, all interactions through the lattice are assumed as temperature-dependent. In addition, the system is subject to a variable magnetic field lifting the degeneracy in the HS state. A stochastic cooperative dynamics of this BEG-like Hamiltonian, describing the equilibrium and nonequilibrium properties of ferromagnetic spin-crossover solids, is derived from the Glauber approach, with appropriate Arrhenius microscopic transition rates. The model generates under the magnetic field, sigmoidal relaxation and a hysteresis phenomenon of the HS fraction, as well as multistep behavior of the magnetization. These behaviors open the way to new route of multi-stable systems, desired in multi-byte electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.