SummaryThe SARS‐Cov‐2 is a single‐stranded RNA virus composed of 16 non‐structural proteins (NSP 1‐16) with specific roles in the replication of coronaviruses. NSP3 has the property to block host innate immune response and to promote cytokine expression. NSP5 can inhibit interferon (IFN) signalling and NSP16 prevents MAD5 recognition, depressing the innate immunity. Dendritic cells, monocytes, and macrophages are the first cell lineage against viruses' infections. The IFN type I is the danger signal for the human body during this clinical setting. Protective immune responses to viral infection are initiated by innate immune sensors that survey extracellular and intracellular space for foreign nucleic acids. In Covid‐19 the pathogenesis is not yet fully understood, but viral and host factors seem to play a key role. Important points in severe Covid‐19 are characterized by an upregulated innate immune response, hypercoagulopathy state, pulmonary tissue damage, neurological and/or gastrointestinal tract involvement, and fatal outcome in severe cases of macrophage activation syndrome, which produce a ‘cytokine storm’. These systemic conditions share polymorphous cutaneous lesions where innate immune system is involved in the histopathological findings with acute respiratory distress syndrome, hypercoagulability, hyperferritinemia, increased serum levels of D‐dimer, lactic dehydrogenase, reactive‐C‐protein and serum A amyloid. It is described that several polymorphous cutaneous lesions similar to erythema pernio, urticarial rashes, diffuse or disseminated erythema, livedo racemosa, blue toe syndrome, retiform purpura, vesicles lesions, and purpuric exanthema or exanthema with clinical aspects of symmetrical drug‐related intertriginous and flexural exanthema. This review describes the complexity of Covid‐19, its pathophysiological and clinical aspects.
Read full abstract