Encapsulation of dye molecules is used as a means to achieve charge separation across different dielectric environments. We analyze the absorption and emission spectra of several coumarin molecules that are encapsulated within an octa-acid dimer forming a molecular capsule. The water-solvated capsule effect on the coumarin’s electronic structure and absorption spectra can be understood as due to an effective dielectric constant where the capsule partially shields electrostatically the dielectric solvent environment. Blue-shifted emission spectra are explained as resulting from a partial intermolecular charge transfer where the capsule is the acceptor, and which reduces the coumarin relaxation in the excited state.