Natural algaecides are more likely to be specific and biodegradable, and may offer an environmentally friendly method for control of cyanobacterial blooms. We explored, for the first time, the potential for watermelon peel aqueous extract (WMPAE) to control the growth of the harmful blue-green alga Aphanizomenon flos-aquae. The growth inhibition and several physiological parameters of A. flos-aquae, in response to WMPAE, were analyzed. Results showed that WMPAE significantly inhibited the growth of A. flos-aquae in a concentration-dependent way. The highest inhibition reached 94 % after 3 days’ treatment with 6 g L−1 of WMPAE and a significant effect was obtained with lower doses and shorter times as well. The cell viability decreased quickly, cell shape changed, and intracellular structural damage occurred. At the same time, the antioxidant enzymes (superoxide dismutase SOD, catalase CAT and peroxidase POD) and malondialdehyde (MDA) levels all increased significantly, indicating that WMPAE between 2–6 g L−1 induced severe oxidative stress and damage to A. flos-aquae. Moreover, production of the four pigments chlorophyll a (Chl a), carotenoids, phycocyanin (PC), and allophycocyanin (APC) were all stimulated, though photosynthesis of A. flos-aquae was clearly inhibited. The maximum quantum yield of photosystem II (Fv/Fm) and the effective quantum yield of photosystem II ( Fv'/Fm') declined sharply, suggesting the decreased photosystem capacity of A. flos-aquae to convert light energy into chemical energy. In addition, non-photochemical quenching (NPQ) of A. flos-aquae increased after a very short time exposure to WMPAE, and decreased significantly with prolonged exposure time, which indicated the failure of photo protection mechanisms. These results suggest that the loss of cell viability, and increases in oxidative stress, and damage to intracellular structure and photosynthetic systems might be the mechanisms for the inhibitory effects. Our results suggested that WMPAE could be a novel and effective approach for controlling the growth of A. flos-aquae in aquatic environments.
Read full abstract