Exposure to industrial contaminants has been implicated in neurobehavioral toxicity in humans. To explore this potential risk, we investigated the neurotoxic effects of oral exposure to a complex groundwater mixture containing petroleum hydrocarbons, pesticides, heavy metals, and unknown parent and breakdown products using male and female Sprague Dawley rats. Rats were randomly divided into six groups and orally exposed daily via drinking water to: (i) tap water, (ii) 10 % v/v low impact groundwater, and (iii) 0.01 %, 0.1 %, 1 %, and 10 % high-impact groundwater for 60 days. Medium- and long-term memory (measured using the novel object recognition task) were impaired. However, no gross motor or coordination deficits were observed by the end of the study period (rotarod test). Doppler ultrasound of the middle cerebral and common carotid arteries was performed to examine the hemodynamic changes. The common carotid blood flow decreased in the groundwater-exposed rats compared to that in the control. However, no significant differences in cerebral blood velocity were observed between the exposed and control groups. A significant reduction in hippocampal serotonin levels was observed in groundwater-exposed rats relative to that in the control group. Collectively, these results indicate that impaired recognition memory in rats exposed to groundwater is accompanied by reduced cranial blood flow and hippocampal neurotoxicity, characterized by altered serotonergic signalling. The levels of detected contaminants known to cause neural or vascular damage were of magnitudes lower than the concentrations of contaminants found in the groundwater mixture, meaning the culprit chemical identity remains unknown. This study emphasizes the need to use whole mixture in exposures when dealing with complex contaminated sites rather than the use of individual compounds.