The blood pressure (BP) etiologic study is complex due to multifactorial influences, including genetic, environmental, lifestyle, and their intricate interplays. We used a metabolomics approach to capture internal pathways and external exposures and to study BP regulation mechanisms after well-controlled dietary interventions. In the ProBP trail (Protein and Blood Pressure), a double-blinded crossover randomized controlled trial, participants underwent dietary interventions of carbohydrate, soy protein, and milk protein, receiving 40 g daily for 8 weeks, with 3-week washout periods. We measured plasma samples collected at baseline and at the end of each dietary intervention. Multivariate linear models were used to evaluate the association between metabolites and systolic/diastolic BP. Nominally significant metabolites were examined for enriching biological pathways. Significant ProBP findings were evaluated for replication among 1311 participants of the BHS (Bogalusa Heart Study), a population-based study conducted in the same area as ProBP. After Bonferroni correction for 77 independent metabolite clusters (α=6.49×10-4), 18 metabolites were significantly associated with BP at baseline or the end of a dietary intervention, of which 11 were replicated in BHS. Seven emerged as novel discoveries, which are as follows: 1-linoleoyl-GPE (18:2), 1-oleoyl-GPE (18:1), 1-stearoyl-2-linoleoyl-GPC (18:0/18:2), 1-palmitoyl-2-oleoyl-GPE (16:0/18:1), maltose, N-stearoyl-sphinganine (d18:0/18:0), and N6-carbamoylthreonyladenosine. Pathway enrichment analyses suggested dietary protein intervention might reduce BP through pathways related to G protein-coupled receptors, incretin function, selenium micronutrient network, and mitochondrial biogenesis. Seven novel metabolites were identified to be associated with BP at the end of different dietary interventions. The beneficial effects of protein interventions might be mediated through specific metabolic pathways.