This study introduces a novel methodology combining rapid stretch compound training with blood flow restriction (BFR) to investigate post activation performance enhancement (PAPE) in basketball players, a field that has been predominantly explored for lower limbs. We aimed to assess the efficacy of this combined approach on upper limb muscle performance in athletes. We employed a randomized, self-controlled crossover trial with ten male basketball players. The bench press throw (BPT) served as the primary metric, with players undergoing four interventions post-baseline: (1) STR-plyometric training; (2) BFR-blood flow restriction; (3) COMB-STR integrated with BFR; and (4) CON-control. Innovatively, we utilized an intelligent tracking sensor to precisely measure peak power (PP), peak velocity (PV), mean power (MP), and mean velocity (MV) at 4, 8, and 12 min post-intervention, providing a detailed temporal analysis of PAPE. The COMB intervention demonstrated superior PAPE effects at 4 min, significantly outperforming STR and BFR alone and the control group across all measured indices (p < 0.05). Notably, the COMB group maintained these improvements for PV, PP, and H up to 12 min post-intervention, suggesting a prolonged effect. (1) The COMB stimulation has been shown to successfully induce PAPE more effectively than STR and BFR modality alone. (2) It appears that the optimal effects of PAPE are achieved within 4 min of exercising under this COMB. By the 12 min mark, only the COMB group continued to show significant improvements in PV, PP, and H compared to both the baseline and the CON group, while the effects in the STR and BFR groups further diminished. This suggests that although the PAPE effect is maintained over time, its optimal performance may peak at the 4 min mark and then gradually weaken as time progresses.
Read full abstract