The Steller sea lion (SSL) population west of 144°W longitude experienced a significant population decline. While there appears to be a stable or increasing population trend in rookeries in the Gulf of Alaska (GOA) and Southeast Alaska (SEA), some rookeries within the Aleutian Islands (AI) have failed to recover. Previous studies found regional differences in whole blood total mercury concentrations ([THg]) showing more than 20% of AI pups had [THg] above critical thresholds for increased risk of immunological effects and other adverse outcomes. Measurements of immune cell-signaling proteins can be used to evaluate the immune status of marine mammals in relation to [THg]. We compared serum cytokine and chemokine concentrations in pups among regions (AI, eastern GOA, SEA), and examined associations among cytokines, chemokines, white blood cell (WBC) counts, and [THg]. Considering liver is an important target organ for mercury and immune protein synthesis we additionally examined the relationship of [THg] with liver-related enzymes serum aspartate (AST) and alanine aminotransferase (ALT). We observed regional differences in cytokine and chemokine measurements and immune protein associations. There was a positive association between total WBC counts and [THg] in AI pups, whereas a negative association between lymphocytes and [THg] in SEA pups. These findings may indicate regional variation in proliferation and differentiation of hematopoietic cells, differences in immune system development, and/or a difference in antigenic stimuli. No associations between [THg] and cytokines, chemokines, AST or ALT were found. Observed regional differences in cytokine and chemokine milieu during gestational and early development in SSL pups could lead to an imbalance in cell differentiation that could impact immunological resiliency in juvenile and adult life stages. We report concentration ranges of a suite of cytokines and chemokines which may prove to be a useful metric for ecotoxicology and risk assessment studies in SSLs and other wildlife.
Read full abstract