The full quantum dynamics of a spinon under external magnetic fields is investigated by using the time-evolving block decimation (TEBD) method within the microcanonical picture of transport. We show that the center of the spinon oscillates back and forth in the absence of dissipation. The quantum many-body behavior can be understood in a single-particle picture of transport and Bloch oscillations, where quantum fluctuations induce finite life times. Transport, oscillations and lifetimes can be tuned to some degree separately by external fields. Other nontrivial dynamics such as resonance as well as chaos have also been discussed.