In this paper, we propose an innovative blockchain deployment mechanism tailored for resource-constrained rate-splitting multiple access (RSMA) Internet of Things (IoT) networks. To address the storage limitations and security concerns inherent in IoT environments, our approach includes several advanced techniques. First, we utilize a Block Allocation Strategy Contract (BASC) to manage storage efficiently. Second, we employ a deep reinforcement learning (DRL) model to dynamically perform block assignment, ensuring optimal storage utilization. To accommodate the resource constraints of IoT devices, we adopt the Smart Byzantine Fault Tolerance (SBFT) consensus mechanism, which offers low latency and energy efficiency. Our framework demonstrates superior performance in storage optimization and reduced running time compared to existing methods, making it well-suited for large-scale IoT networks. Through extensive simulations, we validate the effectiveness of our proposed solution in enhancing security and operational efficiency in RSMA IoT networks.
Read full abstract