AbstractLet ${\mathbb D}$ be the open unit disk, and let $\mathcal {A}(p)$ be the class of functions f that are holomorphic in ${\mathbb D}\backslash \{p\}$ with a simple pole at $z=p\in (0,1)$ , and $f'(0)\neq 0$ . In this article, we significantly improve lower bounds of the Bloch and the Landau constants for functions in ${\mathcal A}(p)$ which were obtained in Bhowmik and Sen (2023, Monatshefte für Mathematik, 201, 359–373) and conjecture on the exact values of such constants.
Read full abstract