The smallest voluntarily controlled structure of the human body is the motor unit (MU), comprised of a motoneuron and its innervated fibres. MUs have been investigated in neurophysiology research and clinical applications, primarily using electromyographic (EMG) techniques. Nonetheless, EMG (both surface and intramuscular) has a limited detection volume. A recent alternative approach to detect MUs is ultrafast ultrasound (UUS) imaging. The possibility of identifying MU activity from UUS has been shown by blind source separation (BSS) of UUS images, using optimal separation spatial filters. However, this approach has yet to be fully compared with EMG techniques for a large population of unique MU spike trains. Here we identify individual MU activity in UUS images using the BSS method for 401 MU spike trains from eleven participants based on concurrent recordings of either surface or intramuscular EMG from forces up to 30% of the maximum voluntary contraction (MVC) force. We assessed the BSS method’s ability to identify MU spike trains from direct comparison with the EMG-derived spike trains as well as twitch areas and temporal profiles from comparison with the spike-triggered-averaged UUS images when using the EMG-derived spikes as triggers. We found a moderate rate of correctly identified spikes (53.0 ± 16.0%) with respect to the EMG-identified firings. However, the MU twitch areas and temporal profiles could still be identified accurately, including at 30% MVC force. These results suggest that the current BSS methods for UUS can accurately identify the location and average twitch of a large pool of MUs in UUS images, providing potential avenues for studying neuromechanics from a large cross-section of the muscle. On the other hand, more advanced methods are needed to address the convolutive and partly non-linear summation of velocities for recovering the full spike trains.
Read full abstract