The partition coefficient (log P) is an important physicochemical property that provides information regarding a molecule's pharmacokinetics, toxicity, and bioavailability. Methods to accurately predict the partition coefficient have the potential to accelerate drug design. In an effort to test current methods and explore new computational techniques, the statistical assessment of the modeling of proteins and ligands (SAMPL) has established a blind prediction challenge. The ninth iteration challenge was to predict the toluene-water partition coefficient (log Ptol/w) of sixteen drug molecules. Herein, three approaches are reported broadly under the categories of quantum mechanics (QM), molecular mechanics (MM), and data-driven machine learning (ML). The three blind submissions yield mean unsigned errors (MUE) ranging from 1.53-2.93 log Ptol/w units. The MUEs were reduced to 1.00 log Ptol/w for the QM methods. While MM and ML methods outperformed DFT approaches for challenge molecules with fewer rotational degrees of freedom, they suffered for the larger molecules in this dataset. Overall, DFT functionals paired with a triple-ζ basis set were the simplest and most effective tool to obtain quantitatively accurate partition coefficients.