Abstract
This work presents a quantum mechanical model for predicting octanol-water partition coefficients of small protein-kinase inhibitor fragments as part of the SAMPL6 LogP Prediction Challenge. The model calculates solvation free energy differences using the M06-2X functional with SMD implicit solvation and the def2-SVP basis set. This model was identified as dqxk4 in the SAMPL6 Challenge and was the third highest performing model in the physical methods category with 0.49 log Root Mean Squared Error (RMSE) for predicting the 11 compounds in SAMPL6 blind prediction set. We also collaboratively investigated the use of empirical models to address model deficiencies for halogenated compounds at minimal additional computational cost. A mixed model consisting of the dqxk4 physical and hdpuj empirical models found improved performance at 0.34 log RMSE on the SAMPL6 dataset. This collaborative mixed model approach shows how empirical models can be leveraged to expediently improve performance in chemical spaces that are difficult for ab initio methods to simulate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.