Turbulent atmosphere, gusts, and manoeuvres significantly excite aircraft rigid body motions and structural vibrations, which leads to reduced ride comfort and increased structural loads. In particular BWB (Blended Wing Body) aircraft configurations, while promising a significant fuel efficiency improvement compared to wing-tube configurations, exhibit severe sensitivity to gusts. In general, a flexible aircraft represents a lightly damped structure involving a large variety of uncertainties due to fuel mass variations during flight, control system nonlinearities, aerodynamic nonlinearities, and structural nonlinearities, to name just a few. Especially at the beginning of flight testing of a newly developed aircraft type, plant models generally require a lot of verification and adjustment based on obtained flight test data, before they can be used reliably for control law design. Adaptive control already is a well-established method for many active noise and vibration control problems, and thus is proposed here for application to the problem of gust load alleviation. However, safety requirements are significantly higher for gust load alleviation systems than for most noise and vibration control systems. This paper proposes a MIMO (Multi-Input Multi-Output) adaptive feed-forward controller for the alleviation of turbulence-induced rigid body motions and structural vibrations on aircraft. The major contribution to the research field of active noise and vibration control is the presentation of a detailed stability analysis of the MIMO adaptive algorithm in order to support potential certification of this method for a safety-critical application. Finally, the proposed MIMO adaptive feed-forward vibration controller is applied to a longitudinal flight dynamics model of a large flexible BWB airliner in order to verify the derived vibration controller on a challenging control problem.