Before blastocyst development, embryos undergo morphological and metabolic changes crucial for their subsequent growth. This study aimed to investigate the relationship between morula compaction and blastocyst formation and the subsequent chromosomal status of the embryos. This retrospective cohort study evaluated embryo development (n = 371) using time-lapse imaging; 94 blastocysts underwent preimplantation genetic testing for aneuploidy (PGT-A). The embryos were classified as fully (Group 1, n = 194) or partially (Group 2, n = 177) compacted. Group 1 had significantly higher proportions of good- and average-quality blastocysts than Group 2 (21.6% vs. 3.4%, p = 0.001; 47.9% vs. 26.6%, p = 0.001, respectively). The time from the morula stage to the beginning and completion of compaction and blastocyst formation was significantly shorter in Group 1 than in Group 2 (78.6 vs. 82.4h, p = 0.001; 87.0 vs. 92.2h, p = 0.001; 100.2 vs. 103.7h, p = 0.017, respectively). Group 1 embryos had larger surface areas than Group 2 embryos at various time points following blastocyst formation. Group 1 blastocysts had significantly higher average expansion rates than Group 2 blastocysts (653.6 vs. 499.2μm2/h, p = 0.001). PGT-A revealed a higher proportion of euploid embryos in Group 1 than in Group 2 (47.2% vs. 36.6%, p = 0.303). Time-lapse microscopy uncovered a positive relationship between compaction and blastocyst quality and its association with embryo ploidy. Hence, compaction evaluation should be prioritized before blastocyst selection for transfer or cryopreservation.
Read full abstract