This study sought to evaluate the short and midterm efficacy and safety of the novel very high power very short duration (vHPvSD) 90 W approach compared to HPSD 50 W for atrial fibrillation(AF) ablation as well as reconnection patterns of 90 W ablations. Consecutive patients undergoing first AF ablation with vHPvSD (90 W; predefined ablation time of 3 s for posterior wall ablation and 4 s for anterior wall ablation) were compared to patients using HPSD (50 W; ablation index-guided; AI 350 for posterior wall ablation, AI 450 for anterior wall ablation) retrospectively. A total of 84 patients (67.1 ± 9.8 years; 58% male; 47% paroxysmal AF) were included (42 with 90 W, 42 with 50 W) out of a propensity score-matched cohort. 90 W ablations revealed shorter ablation times (10.5 ± 6.7 min vs. 17.4 ± 9.9 min; p = .001). No major complication occurred. 90 W ablations revealed lower first pass PVI rates (40% vs. 62%; p = .049) and higher AF recurrences during blanking period (38% vs. 12%; p = .007). After 12 months, both ablation approaches revealed comparable midterm outcomes (62% vs. 70%; log-rank p = .452). In a multivariable Cox regression model, persistent AF (hazard ratio [HR]: 1.442, 95% confidence interval [CI]: 1.035-2.010, p = .031) and increased procedural duration (HR: 1.011, 95%CI: 1.005-1.017, p = .001) were identified as independent predictors of AF recurrence during follow-up. AF ablation using 90 W vHPvSD reveals a similar safety profile compared to 50 W ablation with shorter ablation times. However, vHPvSD ablation was associated with lower rates of first-pass isolations and increased AF recurrences during the blanking period. After 12 months, 90 W revealed comparable efficacy results to 50 W ablations in a nonrandomized, propensity-matched comparison.