The obstruction of the bladder outlet induces a marked increase in bladder mass, and this is accompanied by reduced contractility of bladder smooth muscle and alteration in the cellular architecture. In this study, we show that the composition of various isoforms of actin, a major component of the contractile apparatus and the cytoskeletal structure of smooth muscle, is altered in response to the obstruction-induced bladder hypertrophy. Northern blot analysis of the total RNA isolated from hypertrophied urinary bladder muscle, using a cDNA probe specific for smooth muscle gamma-actin, shows over 200% increase in the gamma-actin mRNA. However, the estimate of the amount of actin from the 2D gel reveals only a 16% increase in gamma-actin, since the 2D gel electrophoresis does not distinguish gamma-smooth muscle actin from gamma-cytoplasmic actin. The bladder smooth muscle alpha-actin and the smooth muscle alpha-actin mRNA are not altered in response to the hypertrophy. The obstructed bladder also reveals a decrease in the beta-cytoplasmic actin (37%) and a concomitant diminution in the beta-cytoplasmic actin mRNA (29%). Hence, the composition of the actin isoforms in bladder smooth muscle is altered in response to the obstruction-induced hypertrophy. This alteration of the actin isoforms is observed at both the protein and mRNA levels.