Kalmia angustifolia is a boreal ericaceous shrub that can rapidly spread on black spruce forest cutovers in eastern Canada, where CPRS (i.e. Cutting with Protection of Regeneration and Soils”) is practiced. The proliferation of Kalmia often coincides with a reduction in the growth rate of regenerating black spruce seedlings. We report on a study where we compared the local effects of Kalmia and black spruce seedling patches (i.e. two types of “Vegetation”) on chemical and biochemical soil properties in CPRS cutovers within mesic spruce-moss and xeric spruce-lichen ecosystems, as well as in four mature spruce-moss forests (i.e. three “Site Types”). Results from 13C-CPMAS-NMR revealed lower O-alkyl C (i.e. carbohydrates), higher aromatic C (i.e. lignin and other phenolics) and higher carbonyl-C (i.e. amide-C and carboxyl groups) in spruce-moss than in spruce-lichen forest floors (F-horizon). In spite of these distinctions, we observed only a small number of Site Type x Vegetation interactions controlling soil properties. Vegetation had a significant effect on ten forest floor properties. Most notably, Kalmia patches had higher concentrations of condensed tannins and lower mineral N cycling. On the other hand, Site Type had a relatively greater effect on the deeper podzolic-B horizons, where mineral N and microbial activity were higher in mature spruce-moss forests than in the cutovers. Green and senescent Kalmia leaves collected at these sites had higher N, tannin and phenolic concentrations than green and senescent spruce needles. A 25 month litter bag study found lower decomposition of Kalmia leaf litter in spruce patches on spruce-lichen cutovers compared to spruce patches on spruce-moss cutovers, or to Kalmia patches on spruce-lichen cutovers. Given that black spruce seedlings obtain most of their nutrients from the forest floor, our results suggest that CPRS may have long-term negative effects on black spruce forest productivity if the spread of Kalmia is left unchecked.
Read full abstract