The present paper investigates the greybody radiation of a general metric including the significant black hole parameters. The fraction of Hawking radiation (HR) that succeeds in achieving infinity is known as “greybody radiation” or transmission probability. In this study, the focus is on the black hole parameters by which greybody radiation could be affected, such as electric and magnetic charges “e” and “g”, respectively, cosmological constant “Λ”, and Taub-Nut “l”. In this regard, we use the nonrotating form of the improved Griffiths–Podolsk (NRIGP) metric which contains the factors “Λ,l,e,g”, all in a single metric. This study allows us to observe the behavior of the scalar perturbation and greybody radiation of each indicated parameter in the presence of the other variables. The spacetime around the black hole behaves as a barrier for particles, and the greybody factor strongly depends on the black hole potential barrier. Therefore, we first studied the scalar perturbation and evaluated the actions of the effective potential by the regarded parameters. The depicted figures for variables such as magnetic charge “g” confirm the consistency between the effective potential and the greybody factor. In this area of study, symmetry plays an essential but hidden role. In the current study, we also consider that all the particles around a black hole have the same symmetry.
Read full abstract