Insect salivary glands play an important role for host feeding, specifically by secreting salivary proteins for digestion and potentially modulating host defenses. Compared to other hemipterans, the significance of salivary glands is less studied in the black-faced leafhopper, Graminella nigrifrons, a crop pest that vectors several agronomically important plant viruses. To identify functionally important genes in the salivary glands of the black-faced leafhopper, we compared transcriptomes between adult salivary glands (SG) and the remaining carcasses. We identified 14,297 salivary gland-enriched transcripts and 195 predicted secretory peptides (i.e., with a signal peptide and extracellular localization characteristics). Overall, the SG transcriptome included functions such as ‘oxidoreduction’, ‘membrane transport’, and ‘ATP-binding’, which might be important for the fundamental physiology of this tissue. We further evaluated transcripts with potential contributions in host feeding using RT-qPCR. Two SG-enriched transcripts (log2 fold change > 5), GnP19 and GnE63 (a putative calcium binding protein), were significantly upregulated in maize-fed adults relative to starved adults, validating their importance in feeding. The SG-enriched transcripts of the black-faced leafhopper could play a potential role for interacting with maize and could be targets of interest for further functional studies and improve pest control and disease transmission.