The purpose of this study is to compare three modeling approaches used for the prediction of daily natural flows 1-7 days ahead. Linear black-box models, which have been commonly used for modeling flows, constitute the first approach. The second approach, a linear type in the context of our application, is less known in the water resources field and is identified by the term diffusion process. The third approach uses models called neural networks, which have gained interest in many fields. All these approaches were tested on 15 watersheds from the Saguenay - Lac-Saint-Jean hydrographic system, located in the province of Quebec, Canada. Because the watersheds possess different physical characteristics, the models were tested under several runoff conditions. In this article, the focus is on results; all approaches along with their conditions of use have been detailed elsewhere in the literature. The results obtained showed that neural networks constitute, for almost all the watersheds studied, the best approach to forecast daily natural flows. The more flexible structure of neural networks allows a best reproduction of complex runoff conditions. However, neural networks are more sensitive to outliers present in observed natural flow series, which are used as inputs in the three models tested. In practice, to model flows at specific periods of the year, it seems preferable to establish seasonal models. If a neural network has an inadequate structure for the period under consideration, then it may produce less convincing results than the other two modeling approaches tested in this study.Key words: forecasts, flows, black-box model, diffusion process, neural network.
Read full abstract