Cell surface carbohydrates play important roles in cell recognition mechanisms. Recently, we provided evidence that particle selection by suspension-feeding bivalves can be mediated by interactions between carbohydrates associated with the particle surface and lectins present in mucus covering bivalve feeding organs. In this study, we used lectins tagged with fluorescein isothiocyanate (FITC) to characterize carbohydrate moieties on the surface of microalgal species and evaluate the effect of oyster mucus on lectin binding. These analyses revealed that concanavalin A (Con A), one of six lectins tested, bound to Isochrysis sp., while Nitzschia closterium reacted with Pisum sativum agglutinin (PNA) and peanut agglutinin (PEA). The cell surface of Rhodomonas salina bound with PNA and Con A, and Tetraselmis maculata cell surface was characterized by binding with PNA, PEA, and Con A. Pre-incubation of microalgae with oyster pallial mucus significantly decreased the binding of FITC-labeled lectins, revealing that lectins present in mucus competitively blocked binding sites. This decrease was reversed by washing mucus-coated microalgae with specific carbohydrates. These results were used to design a feeding experiment to evaluate the effect of lectins on sorting of microalgae by oysters. Crassostrea virginica fed with an equal ratio of Con A-labeled Isochrysis sp. and unlabeled Isochrysis sp. produced pseudofeces that were significantly enriched in Con A-labeled Isochrysis sp. and depleted in unlabeled microalgae. Selection occurred even though two physical-chemical surface characteristics of the cells in each treatment did not differ significantly. This work confirms the involvement of carbohydrate-lectin interaction in the particle sorting mechanism in oysters, and provides insights into the carbohydrate specificity of lectins implicated in the selection of microalgal species.
Read full abstract