Abstract Bisphosphoglycerate mutase (EC 5.4.2.4.) is a trifunctional enzyme which displays synthase, mutase, and phosphatase activities. The purification, characterization, and structural study of an abnormal form of the enzyme, isolated from a patient which we reported earlier (Rosa, R., Prehu, M. O., Beuzard, Y., and Rosa, J. (1978) J. Clin. Invest. 62, 907-915), is described. The abnormal enzyme, present at 50% of the level of the normal enzyme as estimated by immunological methods, showed elevated electrophoretic mobility and hybridized with erythrocyte phosphoglycerate mutase (EC 5.4.2.1.) in the same manner as the normal control. The mutant enzyme was unstable at 55 degrees C and could be protected against thermal instability by 0.5 mM glycerate 2,3-bisphoshate but not by either glycerate 3-phosphate or glycolate 2-phosphate. Two of the three functions of the mutant enzyme were distinct from those of the normal protein. The specific activity of the synthase was 0.57% of normal and that of the mutase 4.1%. By contrast, the specific phosphatase activity was not affected by the mutation. However, the phosphatase activity of the mutated protein was markedly less stimulated by glycolate-2-phosphate than that of the control. High performance liquid chromatography analysis of tryptic peptides derived from the mutant enzyme showed an abnormal profile with the absence of two peaks normally containing the T12 and T13 peptides and without the appearance of a supplementary peak. Amino acid sequence and mass spectrometric analysis demonstrated the substitution of Arg----Cys residue in position 89 producing an uncleaved T12-T13 present in the same peak as the T6. Considered together, our data suggest that Arg-89 is located at or near the active site of bisphosphoglycerate mutase and that this residue is probably involved in the binding of monophosphoglycerates.