The fact that in organic semiconductors the Hubbard energy is usually positive appears to be at variance with a bipolaron model to explain magnetoresistance (MR) in those systems. Employing percolation theory, we demonstrate that a moderately positive $U$ is indeed compatible with the bipolaron concept for MR in unipolar current flow, provided that the system is energetically disordered, and the density of states (DOS) distribution is partially filled, so that the Fermi level overlaps with tail states of the DOS. By exploring a broad parameter space, we show that MR becomes maximal around $U=0$ and even diminishes at large negative values of $U$ because of spin independent bipolaron dissociation. Trapping effects and reduced dimension enhance MR.