This study describes the development and intercomparison of generic physiologically-based toxicokinetic (PBTK) models for humans comprised of internally consistent one-compartment (1Co-) and multi-compartment (MCo-) implementations (G-PBTK). The G-PBTK models were parameterized for an adult male (70 kg) using common physiological parameters and in vitro biotransformation rate estimates and subsequently evaluated using independent concentration versus time data (n = 6) and total elimination half-lives (n = 15) for diverse organic chemicals. The model performance is acceptable considering the inherent uncertainty in the biotransformation rate data and the absence of model calibration. The G-PBTK model was then applied using hypothetical neutral organics, acidic ionizable organics and basic ionizable organics (IOCs) to identify combinations of partitioning properties and biotransformation rates leading to substantial discrepancies between 1Co- and MCo-PBTK calculations for whole body concentrations and half-lives. The 1Co- and MCo-PBTK model calculations for key toxicokinetic parameters are broadly consistent unless biotransformation is rapid (e.g., half-life less than five days). When half-lives are relatively short, discrepancies are greatest for the neutral organics and least for the acidic IOCs which follows from the estimated volumes of distribution (e.g., VDSS = 9.6–15.4 L/kg vs 0.3–1.6 L/kg for the neutral and acidic compounds respectively) and the related approach to internal chemical equilibrium. The model intercomparisons demonstrate that 1Co-PBTK models can be applied with confidence to many exposure scenarios, particularly those focused on chronic or repeat exposures and for prioritization and screening-level decision contexts. However, MCo-PBTK models may be necessary in certain contexts, particularly for intermittent, short-term and highly variable exposures. A key recommendation to guide model selection and the development of tiered PBTK modeling frameworks that emerges from this study is the need to harmonize models with respect to parameterization and process descriptions to the greatest extent possible when proceeding from the application of simpler to more complex modeling tools as part of chemical assessment activities.