This study of the Pikes Peak batholith includes the mineralogy and petrology of quartz syenite at West Creek and of fayalite-bearing and fayalite-free biotite granite near Mount Rosa; major element chemistry of the batholith; comparisons with similar postorogenic, intracratonic, sodic to potassic intrusives; and genesis of the batholith. The batholith is elongate in plan, 50 by 100 km, composite, and generally subalkalic. It was emplaced at shallow depth 1,040 m. y. ago, sharply transects its walls and may have breached its roof. Biotite granite and biotite—hornblende granite are predominant; quartz syenite, fayalite granite and riebeckite granite are present in minor amounts. Fayalite-bearing and fayalite-free quartz syenite, fayalite-biotite granite and riebeckite granite show a well-defined sodic differentiation trend; the less sodic fayalite-free granites exhibit a broader compositional range and no sharp trends. Crystallization was largely at P H 2O < P total; P H 2O approached P total only at late stages. Aplite residual to fayalite-free biotite granite in the north formed at about 1,500 bars, or 5 km depth. Feldspar assemblages indicate late stages of crystallization at about 720°C. In the south ilmenite and manganian fayalite indicate f O 2 of 10 −17 or 10 −18 bars. Biotite and fayalite compositions and the ‘granite minimum’ imply completion of crystallization at about 700°C and 1,500 bars. Nearby fayalite-free biotite granite crystallized at higher water fugacity. All types of syenite and granite contain 5–6% K 2O through a range of SiO 2 of 63–76%. Average Na 2O percentages in quartz syenite are 6.2, fayalite granite 4.2, and fayalite-free granite 3.3 MgO contents are low, 0.03–0.4%; FeO averages 1.9–2.5%. FeO/Fe 2O 3 ratios are high. Fluorine ranges from 0.3 to 0.6%. The Pikes Peak intrusives are similar in mode of emplacement, composition, and probably genesis to rapakivi intrusives of Finland, the Younger Granites of Nigeria, Cape Ann Granite and Beverly Syenite, Mass., and syenite of Kungnat, Greenland, among others — allowing for different levels of erosion. A suite that includes gabbro or basalt, anorthosite, quartz syenite, fayalite granite, riebeckite granite, and biotite and/or hornblende granites is of worldwide occurrence. A model is proposed in which mantle-derived, convecting alkali olivine basaltic magma first reacts with K 2O-poor lower crust of granulite facies to produce magma of quartz syenitic composition. The syenitic liquid in turn reacts with granodioritic to granitic intermediate crust of amphibolite facies to produce the predominant fayalite-free biotite and biotite-hornblende granites of the batholith. This reaction of magma and roof involves both partial melting and the reconstitution and precipitation of refractory phases, as Bowen proposed. Intermediate liquids include MgO-depleted and Na 2O-enriched gabbro, which precipitated anorthosite, and alkali diorite. The heat source is the basaltic magma; the heat required for partial melting of the roof is supplied largely by heats of crystallization of phases that settle out of the liquid — mostly olivine, clinopyroxene and plagioclase.