In 1980s, medicines produced through recombinant DNA technology created a novel opportunity for management of several debilitating and life threatening diseases. However, these medicines are very expensive and therefore not affordable for many patients especially those living in low resourced countries. Biopharmaceuticals mostly have a high unit cost and often prescribed for chronic medical conditions with possibility of long-term use. Therefore, they will impose a burden on either national health care systems or patients’ out of pocket. It is estimated that the average daily treatment of a patient with branded biopharmaceuticals will cost at least 22 times of those for small molecule medicines [1]. Biopharmaceuticals are medicines produced from living organisms via genetic manipulation. Although use of living organisms for production of vaccines has a long history, the first DNA recombinant medicine for human use, human insulin, was approved in the USA in 1982. However, introduction of other biopharmaceuticals including monoclonal antibodies into market later on experienced a much faster pace. Biopharmaceuticals are large and complex molecules which their active substances are mostly polypeptides, glycoproteins, proteins, and nucleic acids. Therefore, it is practically impossible to manufacture an “identical” copy for these molecules. Blood coagulating factors, erythropoietins, gonadotrophins, granulocyte colony stimulating factor (GCSF), human growth hormones (GH), interferons (INF), interleukins and monoclonal antibodies are among the most important marketed biopharmaceuticals in past decades [2]. Despite complexity of their molecules, biopharmaceuticals are very well characterized both for their clinical use and production methods. Biopharmaceuticals are also very sensitive to their production procedures. When the manufacturing process is modified by scaling up or transferring it to alternative facilities, new products might show modified specifications. Even though these manufacturing changes are tightly regulated most of the time they still will cause observable changes in the final product. However, all of these products will be marketed under one single brand name indicating that regulators consider these changes in the range of “highly similar” products. The fact that their administration provides expected clinical outcomes also confirm their comparability. “Biosimilars” are biopharmaceuticals which are manufactured by non originator pharmaceutical companies following expiration of patent period. According to current guidelines and regulations for granting marketing authorization “similarity” should be proven between biosimilar and its corresponding originator biopharmaceutical. Biopharmaceuticals have a very fast growing market. It is reported that 32% of products in development pipeline and 7.5% of marketed medicines are biopharmaceuticals which account for around 10% of pharmaceutical expenditure [3]. It is forecasted that by 2020, biopharmaceuticals will sell around US$23 billion in the EU and US$29 billion in the USA and of course all of this market could be challenged by biosimilars [3]. The biopharmaceutical market has expanded drastically in the past two decades. Although most of these medicines enjoyed exclusivity in the market due to their patent; recent years have witnessed expiration of their patent.
Read full abstract