The study objective is to develop approaches to making a mobile robotic walking-type system that moves based on bionic principles of movements. The developed system is equipped with six limbs and moves typically for some insects, which increases its cross-country capacity in difficult road conditions. The algorithm of the movement arrangement is described and the dynamic analysis of the movement of the executive mechanism links is carried out. A kinematic scheme is made and an algorithm for planning the trajectories of the robot's basis is developed. To implement the modeling, the task of moving the limb of a six-legged robot, presented in the form of a flat two-link mechanism, is considered separately. Based on the given functions, graphs of changes in the basis coordinates and hinge torques, providing the necessary movements of the robot along a given trajectory, are obtained. The direct dynamic problem for one robot leg, which is considered as a system with two degrees of freedom, is solved on the basis of the Lagrange equation. The developed equations are solved in Matlab environment. The torque values of the robot drives necessary for working out a given trajectory are obtained. The novelty of the work is in the development and research of the mechanisms of the walking drive of a mobile robot implementing an algorithm of step-by-step movement, which provides lower energy costs than existing analogues. The results will be useful in making mobile multifunctional robotic systems created on the basis of the insect-type movement, and operating independently in a large number of practical applications.