Sterilization treatments impact microbial communities and key biomolecule synthesis, influencing the aroma and quality of fruit wine fermentation. However, the roles of microorganisms in various fermentation techniques and the impact of sterilization treatments on aroma formation and key biomolecule synthesis are not well understood. This study aims to elucidate the effects of sterilization treatments on the synthesis of key biomolecules and microbial community dynamics in fruit wine fermentation, focusing on their relation to aroma compounds. Using purple fruit as the primary subject, we analyzed the starting and final microbe populations in controlled test fermentation (CTF) and natural test fermentation (NTF) under different sterilizing treatments employing advanced sequencing strategies. We utilized multivariate analysis and regression analyses, via the SPSS tool to examine relationships between microbial fungal and bacterial genus-level communities, microbiological diversity, permanent substances aromatic substances, and physiological indexes. In NTF, we identified a total of 150 fungal genera, and 140 bacterial genera, with dominant genera including Candida, Burkholderia, Streptococcus, and Oenococcus. In CTF, 400 fungal genera, and 120 bacterial genera were identified, with the dominant genera being Geotrichum, Pichia, Aspergilus, and Saccharomyces, alongside Streptococcus, Paucibacter, Pantoea, Akkermansia, Lactobacillus, and Bifidobacterium. Positive correlations were observed between specific microbial genera and flavor compounds in both fermentation methods. This study provides insights into how sterilization treatments affect microbial dynamics and key biomolecule synthesis, offering valuable resources for enhancing the aromatic profile of fruit wine.
Read full abstract