Abstract
Reaction of tris(2-hydroxybenzylidene)-triaminoguanidinium chloride (I·HCl) and tris(5-bromo-2-hydroxybenzylidene)-triaminoguanidinium chloride (II·HCl) with [VIVO(acac)2] (1:1 molar ratio) in refluxing methanol resulted in mononuclear [VIVO] complexes, [VIVO(H2L1')(MeOH)] (1) and [VIVO(H2L2')(MeOH)] (2), respectively, where I and II undergo intramolecular triazole ring formation. Aerial oxidation of 1 and 2 in MeOH in the presence of Cs2CO3 gave corresponding cis-[VVO2] complexes Cs[(VO2)(H2L1')] (3) and Cs[(VO2)(H2L2')] (4). However, reaction of an aerially oxidized methanolic solution of [VIVO(acac)2] with I·HCl and II·HCl in the presence of Cs2CO3 (in 1:1:1 molar ratio) gave mononuclear complexes Cs[(VO2)(H3L1)] (5) and Cs[(VO2)(H3L2)] (6) without intramolecular triazole ring formation. Similar anionic trinuclear complexes Cs2[(VO2)3(L1)] (7) and Cs2[(VO2)3(L2)] (8) were isolable upon increasing the amounts of the vanadium precursor and Cs2CO3 to 3 equiv to the reaction applied for 5 and 6. Keeping the reaction mixture of 1 in MeOH under air gave [VVO(H2L1')(OMe)] (9). Structures of 3, 7, 8, and 9 were confirmed by X-ray crystal structure study. A permanent porosity in the crystalline metal-organic framework of 7 confirmed by single-crystal X-ray investigation was further verified by the BET study. Along with a suitable reaction mechanism, these synthesized compounds were explored as effective catalysts for the synthesis of biomolecules 4H-pyran/4H-chromenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.