Recent model projections and many research results across the world suggest that forests could be significant carbon sinks or sources in the future, contributing in a such a way to global warming mitigation. Conversion of coppice forest to high forest may play an important role towards this direction. This study deals with the estimation of biomass, carbon pool and accumulation rates in all IPCC biomass categories of a 77 year-old oak ecosystem, which has been subjected to conversion from coppice to high forest through repeated tending measures. The research includes a plethora of field tree measurements, destructive sampling of representative oak trees and a systematic sampling of dead wood (standing and fallen), litter and soil. Furthermore, for the estimation of above ground tree living biomass at the stand level, we developed and tested appropriate allometric biomass equations based on the relationships between various independent tree variables (morphological characteristics) and the different tree biomass compartments or leaf biomass. Data analysis shows that coppice conversion results in large accumulation of carbon in all ecosystem pools, with an average annual carbon rate accumulation of 1.97 Mg ha–1 in living above and below ground tree biomass and small amounts to dead wood and litter. The developed allometric equations indicate that above ground tree living biomass can be reliable and precisely predicted by the simple measurement of tree diameter.
Read full abstract