Hypertensive individuals are at a high risk of stroke, and thus, prevention of stroke in hypertensive patients is essential. Metabolomics and lipidomics can be used to identify diagnostic biomarkers and conduct early assessments of stroke risk in hypertensive populations. In this study, serum samples were collected from 30 hypertensive ischemic stroke (IS), 30 matched hypertensive and 30 matched healthy participants. Metabolomics and lipidomics analyses were conducted via liquid chromatography-tandem mass spectrometry, and the data were analyzed using multivariate and univariate statistical methods. A random forest algorithm and binary logistic regression were used to screen the biomarkers and establish diagnostic model. We detected 21 differential metabolites and 38 differential lipids between the hypertensive IS and healthy group. Moreover, we found 18 differential metabolites and 31 differential lipids between the hypertensive IS and hypertension group. In particular, the following seven metabolites or lipids distinguished the hypertensive IS from the healthy group: 4-hydroxyphenylpyruvic acid, cafestol, phosphatidylethanolamine (PE) (18:0p/18:2), PE (16:0e/20:4), (O-acyI)-1-hydroxy fatty acid (36:3), PE (16:0p/20:3) and PE (18:1p/18:2) (rep). The following seven biomarkers distinguished the hypertensive IS from the hypertension group: diglyceride (DG) (20:1/18:2), PE (18:0p/18:2), PE (16:0e/22:5), phosphatidylcholine (40:7), dimethylphosphatidylethanolamine (50:3), DG (18:1/18:2), and 4-hydroxyphenylpyruvic acid. The aforementioned panels had good diagnostic and predictive ability for hypertensive IS. Our study determines the metabolomic and lipidomic profiles of hypertensive IS patients and thereby identifies potential biomarkers of the presence of IS in hypertensive populations.