Andrographolide (AGP), a bioactive diterpene lactone, is an active constituent extracted from Andrographis paniculata. It has many biological activities, such as antioxidant, antitumor, antivirus, anti-inflammation, hepatoprotection, and cardioprotection. The aim of the present study is to investigate the cardioprotective effects of AGP in a mouse model of myocardial ischemia-reperfusion injury (MIRI). Adult male C57BL/6J mice were pre-treated orally with AGP (25mg/kg) for six days. After 30min of the left anterior descending coronary artery occlusion followed by 24h of reperfusion, mice received an additional dose of AGP. The results showed that: (i) AGP pretreatment significantly reduced myocardial infarct size and cardiac injury biomarkers in MIRI mice and improved left ventricular ejection fraction (EF) and fractional shortening (FS); (ii) AGP pretreatment attenuated MIRI-induced oxidative stress imbalance in MIRI mice by increasing total antioxidant capacity (T-AOC) and reducing the levels of hydrogen peroxide (H2O2), nitric oxide (NO), malondialdehyde (MDA), and dihydroethidium (DHE); (iii) AGP pretreatment increased Bcl-2 expression and decreased caspase-3 and Bax expression in ischemic myocardial tissue, along with a reduction in TUNEL-positive cells. Further analysis showed that stimulation by I/R decreased peroxisome proliferator-activated receptor-α (PPAR-α) expression in ischemic cardiac tissue, which was prevented by AGP administration. Moreover, administration of the PPAR-α antagonist GW6471 (1mg/kg) abolished the protective effect of AGP on oxidative stress and apoptosis in the ischemic heart tissue of mice stimulated by ischemia-reperfusion. Taken together, these results suggest that AGP attenuates MIRI-induced cardiac injury by up-regulating PPAR-α expression, thereby preventing oxidative stress and cellular apoptosis.
Read full abstract