Bipolar disorder (BD) is a genetically and phenotypically complex psychiatric disease. Although previous studies have suggested that the relatives of BD patients have an increased risk of experiencing affective disturbances, most relatives who have similar genotypes may not manifest the disorder. We aim to identify the neuroimaging alterations—specifically, the cortical folding structures of the anterior limbic network (ALN)—in BD patients and their siblings, compared to healthy controls. The shared alterations in patients and their siblings may indicate the hereditary predisposition of BD, and the altered cortical structures unique to BD patients may be a probe of BD expression. High-resolution, T1-weighted magnetic resonance images for 17 euthymic patients with BD, 17 unaffected siblings of BD patients, and 22 healthy controls were acquired. We categorized the cortical regions within the ALN into sulcal and gyral areas, based on the shape index, followed by the measurement of the folding degree, using the curvedness. Our results revealed that the changes in cortical folding in the orbitofrontal and temporal regions were associated with a hereditary predisposition to BD. Cortical folding structures in multiple regions of the ALN, particularly in the striatal–thalamic circuit and anterior cingulate cortex, could be used to differentiate BD patients from healthy controls and unaffected siblings. We concluded that the cortical folding structures of ALN can provide potential biomarkers for clinical diagnosis of BD and differentiation from the unaffected siblings.
Read full abstract