Peroxynitrite, a colorless and odorless reactive nitrogen species, plays a critical role in various physiological processes within biological systems. Therefore, developing a reliable method for quantitative detection of peroxynitrite in living systems is essential. In this study, we synthesized a simple, two-step, reaction-based fluorescent probe, designated as EHMC, specifically for peroxynitrite detection. The synthesis involved the use of 4-(9-phenyl-9H-carbazol-3-yl)benzaldehyde as the fluorophore and 2-hydrazineylpyridine as the recognition group, both of which exhibit inherently weak fluorescence. Upon oxidation of the C=N bond by peroxynitrite, EHMC undergoes conversion into an aldehyde, resulting in a significant fluorescence response. EHMC demonstrated high selectivity and sensitivity, achieving a detection limit of 5.43 µM under physiological conditions. Additionally, EHMC was successfully applied to HeLa cellular models, where it exhibited excellent cellular imaging capability for peroxynitrite detection in living systems.
Read full abstract