High-valent metal-oxo species are key reactive intermediates in many biological and biological oxidation reactions. Herein, allylic hydroxylation (C-H) versus epoxidation (C═C) reactions of propene with a model catalyst iron phthalocyanine (FePc) in the presence of hydrogen peroxide were investigated contrastively, aiming to probe the active intermediates, structure-activity relationship, and reaction pathways. Our results showed that H2O2 as an oxygen-donor reagent can be easily decomposed on FePc to produce key active intermediates O═FePc and O═FePc═O with the energy barriers of 19.57 and 23.89 kcal/mol, respectively. In the selective oxidation of propene, O═FePc has a small preference for C═C epoxidation over C-H hydroxylation while O═FePc═O has a small preference for C-H hydroxylation. Since the electron-withdrawing O axial ligand in O═FePc═O further increases the radical character (Fe-O·) and Fe-O bond length of the iron-oxo moiety, O═FePc═O has better catalytic performance in both C═C epoxidation and C-H hydroxylation than O═FePc. Furthermore, in the whole reaction processes, the dual-hydrogen bonds between the two terminal H atoms of the alkene and allylic groups of propene and oxygen atom of the iron-oxo moiety would lead to the reaction toward C═C epoxidation while the single-hydrogen bond between the terminal H atom of the allylic group and the oxygen atom of the iron-oxo moiety would lead to the reaction toward C-H hydroxylation, implying that the weakly interacting hydrogen bonds affecting oxidation pathways also play a very important role in the regioselectivity of C═C epoxidation and C-H hydroxylation.
Read full abstract